

National Air Quality Forecast Capability: Progress in 2012

September 13, 2012

Ivanka Stajner

Background on NAQFC Progress in 2012

- Ozone
- Smoke
- Dust
- PM2.5

Feedback and outreach

Summary

National Air Quality Forecast Capability Current Capabilities, 9/2012

- Improving the basis for air quality alerts
- Providing air quality information for people at risk

Prediction Capabilities:

• Operations:

Ozone nationwide: expanded from EUS to CONUS (9/07), AK (9/10) and HI (9/10)

<u>Smoke nationwide</u>: implemented over CONUS (3/07), AK (9/09), and HI (2/10)

Dust over CONUS: (3/12)

- Experimental testing: Ozone predictions
- Developmental testing:

Components for particulate matter (PM) forecasts

National Air Quality Forecast Capability End-to-End Operational Capability

Model: Linked numerical prediction system

Operationally integrated on NCEP's supercomputer

- NOAA NCEP mesoscale numerical weather prediction
- NOAA/EPA community model for air quality: CMAQ
- NOAA HYSPLIT model for smoke and dust prediction Observational Input:
- NWS weather observations; NESDIS fire locations
- EPA emissions inventory

Gridded forecast guidance products

- On NWS servers: <u>airquality.weather.gov</u> and ftp-servers
- On EPA servers
- Updated 2x daily

Verification basis, near-real time:

- Ground-level AIRNow observations of surface ozone
- Satellite observations of smoke and dust

Customer outreach/feedback

- State & Local AQ forecasters coordinated with EPA
- Public and Private Sector AQ constituents

Progress in 2012

North American Meteorological model was upgraded to Non-hydrostatic Multi-scale Model (NMMB)

These meteorological predictions are used for all air quality predictions (October 2011)

Ozone Updates:

- Substantial emission updates:
 - Mobile6 used for mobile emissions, but with emissions scaled by growth/reduction rate from 2005 to 2012
 - Non-road area sources use Cross State Rule Inventory
 - Canadian emissions use 2006 inventory

Dust updates:

- Dust predictions implemented operationally in March 2012
- Dust emissions are modulated by real-time soil moisture
- Testing use of a longer time step to speed up dust predictions

Smoke updates:

• Testing of updates to plume rise and deposition parameters

Operational Nationwide Ozone

Operational predictions at http://airquality.weather.gov

Operational and experimental predictions show similar performance

Fraction correct with respect to 76ppb threshold

Operational predictions at http://airquality.weather.gov

- Began on June 23, west of Colorado Springs¹
- Moved eastward from winds, destroying 346 homes
- Peak of fire June 26-27
- Evacuations reached 32,000 on June 27
- Over 17,000 acres destroyed
- The cause of the fire is under investigation
- Smoke plume reached heights of 20,000 feet²
- High winds in region have fueled rapid spread of fire; dry conditions persistent; consecutive Red Flag Warning days

- 1. Inciweb Reports, http://www.inciweb.org/incident/2929/
- 2. Waldo Canyon fire reaches 'epic proportions', http://www.csmonitor.com/USA/Latest-News-Wires/2012/0627/Waldo-Canyon-fire-reaches-epic-proportions-video
 - AirNOW tech data, www.airnowtech.org

3.

4. NWS Air Quality Predictions, http://airguality.weather.gov

06z model run

Verification of smoke predictions

- Figure of merit in space (FMS), which is a fraction of overlap between predicted and observed smoke plumes, threshold is 0.08 marked by green line
- NESDIS GOES Aerosol/Smoke Product is used for verification

CONUS Dust Predictions

Surface Dust

Vertical Dust

Predictions at http://airquality.weather.gov

CONUS Dust Predictions

Operational Predictions at http://airquality.weather.gov/

Standalone prediction of airborne dust from dust storms:

- •Wind-driven dust emitted where surface winds exceed thresholds over source regions
- Source regions with emission potential estimated from monthly MODIS deep blue climatology (2003-2006).

•HYSPLIT model for transport, dispersion and deposition (Draxler et al., JGR, 2010)

•Emissions now modulated by real-time soil moisture.

•Developed satellite product for verification (Zeng and Kondragunta)

Prediction of dust from dust storms over CONUS End-to-End Capability

Model Components: Linked numerical prediction system

Operationally integrated on NCEP's supercomputer

NCEP mesoscale NWP: NAM (NMMB, 12km resolution) NOAA/OAR HYSPLIT dispersion for dust transport

Observational Input:

NWS real-time weather observations assimilated in NAM

Gridded forecast guidance products

On NWS Telecommunications Gateway and NDGD Updated 2 times per day: 6z and 12z

Routine verification basis

Near real-time NOAA/NESDIS dust-column product

Customer outreach/feedback

NOAA/NWS field forecasters State & Local AQ forecasters, coordinated with EPA Public and Private Sector AQ constituents

Texas dust event on November 2, 2011

A widespread dust event occurred on Nov 2 beginning around 18Z in west central Texas. This event was the result of ~25kt synoptic scale winds ahead of a cold front. Through 0Z (Nov 3) the dust blew south covering all of west Texas and parts of southeast New Mexico.

Predicted dust concentration (ug/m3) at the surface

Current model: emissions modulated by soil moisture

Previous model: emissions not modulated by soil moisture

Dust predictions testing of longer time step

Column average concentration

Longer time step reduces prediction run time by over 30%

Verification of dust predictions with 10 min and 6 min time step

PM2.5 Developmental Predictions

Developmental predictions, Summer 2012

Focus group access only, real-time as resources permit

Aerosols over CONUS

From NEI sources only

- CMAQ: CB05 gases, AERO-4 aerosols
- Sea salt emissions and reactions

Wildfire smoke emissions not included

Quantitative PM performance

Forecast challenges

- Aerosol simulation using emission inventories:
- Show seasonal bias-winter, overprediction; summer, underprediction
- Intermittent sources
- Chemical boundary conditions/transboundary inputs

Partnering with AQ Forecasters

Focus group, State/local AQ forecasters:

- Participate in real-time developmental testing of new capabilities, e.g. aerosol predictions
- Provide feedback on reliability, utility of test products
- Local episodes/case studies emphasis
- Regular meetings; working together with EPA's AIRNow and NOAA
- Feedback is essential for refining/improving coordination

http://www.epa.gov/airnow/airaware/

Summary

Current US national AQ forecasting capability status:

- Ozone prediction nationwide (AK and HI since September 2010)
- Smoke prediction nationwide (HI since February 2010)
- Dust prediction for CONUS sources (operational since March 2012)
- Developmental testing of CMAQ aerosol predictions with NEI sources

Acknowledgments: AQF Implementation Team Members

Special thanks to Paula Davidson, OST chief scientist and former NAQFC Manager and to Jim Meager former NOAA AQ Matrix Manager

ack
ack
ations
NDGD Product Development
t
g
ace development, testing, & integration
ol and feedback testing
n
product testing and integration
nd systems testing
n and AQF webdrawer
ent, adaptation of AQ simulations for AQF
ions
verification product development
noke and dust verification products,
egration with smoke forecast tool
ment. coordination with NAQFC

* Guest Contributors

Operational AQ forecast guidance <u>airquality.weather.gov</u>

Smoke Products Nationwide since 2010 Dust Products Implemented 2012 Ozone products Nationwide since 2010

Further information: www.nws.noaa.gov/ost/air_quality